Advances in Engineered Liver Models for Investigating Drug-Induced Liver Injury
نویسندگان
چکیده
Drug-induced liver injury (DILI) is a major cause of drug attrition. Testing drugs on human liver models is essential to mitigate the risk of clinical DILI since animal studies do not always suffice due to species-specific differences in liver pathways. While primary human hepatocytes (PHHs) can be cultured on extracellular matrix proteins, a rapid decline in functions leads to low sensitivity (<50%) in DILI prediction. Semiconductor-driven engineering tools now allow precise control over the hepatocyte microenvironment to enhance and stabilize phenotypic functions. The latest platforms coculture PHHs with stromal cells to achieve hepatic stability and enable crosstalk between the various liver cell types towards capturing complex cellular mechanisms in DILI. The recent introduction of induced pluripotent stem cell-derived human hepatocyte-like cells can potentially allow a better understanding of interindividual differences in idiosyncratic DILI. Liver models are also being coupled to other tissue models via microfluidic perfusion to study the intertissue crosstalk upon drug exposure as in a live organism. Here, we review the major advances being made in the engineering of liver models and readouts as they pertain to DILI investigations. We anticipate that engineered human liver models will reduce drug attrition, animal usage, and cases of DILI in humans.
منابع مشابه
Effects of associated SCF and G-CSF on liver injury two weeks after liver damage: A model induced by thioacetamide administration
The present study aimed at investigating the beneficial effects of co-administering granulocyte colony–stimulating factor (G-CSF) and stem cell factor (SCF) in a model of chronic liver injury induced by thioacetamide (TAA). Biochemical and histopathology- cal examinations were performed on serum and liver specimens. At the end of the treatment period, the rats were anesthetized with ether, seru...
متن کاملHumanized mice with ectopic artificial liver tissues.
"Humanized" mice offer a window into aspects of human physiology that are otherwise inaccessible. The best available methods for liver humanization rely on cell transplantation into immunodeficient mice with liver injury but these methods have not gained widespread use due to the duration and variability of hepatocyte repopulation. In light of the significant progress that has been achieved in ...
متن کاملThe application of engineered liver tissues for novel drug discovery.
INTRODUCTION Drug-induced liver injury remains a major cause of drug attrition. Furthermore, novel drugs are being developed for treating liver diseases. However, differences between animals and humans in liver pathways necessitate the use of human-relevant liver models to complement live animal testing during preclinical drug development. Microfabrication tools and synthetic biomaterials now a...
متن کاملMicroengineered liver tissues for drug testing.
Drug-induced liver injury (DILI) is a leading cause of drug attrition. Significant and well-documented differences between animals and humans in liver pathways now necessitate the use of human-relevant in vitro liver models for testing new chemical entities during preclinical drug development. Consequently, several human liver models with various levels of in vivo-like complexity have been deve...
متن کاملEvaluation of the effect of taurine on cisplatin-induced hepatic injury and oxidative stress in male rats
Introduction: The principal dose-limiting factor in the use of cisplatin as an antineoplastic drug is its hepatic toxicity. This study was designed to investigate the protective role of taurine against cisplatin-induced hepatic injury. Methods: Male albino rats (180-220 g) were divided in to 4 groups (n=8) as follows: (1) saline-treated group (2): cisplatin-treated group (10 mg/kg ip) (3): g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016